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ABSTRACT 

For DACQ, we restrict a point to the quadrant in which it is assigned initially. When a lattice point is divided 

into four new points, we consider only movements of currently assigned points to one of the four new points. 

Therefore, at each stage of the algorithm, only four lattice points are considered for local search.  

For DACN, we restrict a point so that it can be assigned only to a neighbor of the  

lattice point to which it is currently assigned.  A solution s' belongs to the neighborhood  

of a solution s if for any point i    M with an assignment of k    N in s, the assignment of i  

in s' is l, where l is any lattice point in N that is next to k, either horizontally, vertically, or  

diagonally (see Figure 4.3). Thus, at each step, a maximum of nine lattice points can be  

considered for local search.  Note that i can stay where it is currently assigned.  

Key words: Quadrant, algorithm, neighborhood, diagonally. 

 

INTRODUCTION 

Today’s data sets are usually large and multidimensional, growing and changing  

with time; consequently, they are usually complex, dynamic, and difficult to visualize.  

Data visualization reveals the relationships and trends that are not evident from the raw  

multidimensional data sets by using mathematical techniques to reduce the number of  

dimensions while preserving the relevant inherent properties. Data visualization rests on  

the premise that a picture is worth a thousand words (Schiffman et al., 1981; Young, 1987). The 

practical value of data visualization is based on the fact that it is often easier  

and more informative to look at a picture of the data than to look at the data points  

themselves, particularly when the data set is large (Schiffman et al., 1981). Large and  

multidimensional data sets that require visualization are commonplace today and may be  

encountered in many disciplines ranging from the physical, biological, and behavioral  

sciences to product development, marketing, and advertising (Schiffman et al., 1981).  
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REVIEW OF LITERATURE 

Popular techniques used to solve data visualization problems include  

multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997;  

Sammon, 1969; Schiffman et al., 1981; Young, 1987). These techniques solve the data  

visualization problem using nonlinear optimization techniques. A limitation of a  

nonlinear algorithm is the small number of vectors (data points) it can handle (Sammon,  

1969). Even with today’s fast computers, nonlinear optimization techniques are usually  

slow and inefficient for large data sets. Discrete optimization techniques may provide an  

efficient solution to the data visualization problem. 

 

MATERIAL AND METHOD 

Next, we suggest two refinements to DAC that reduce running time. We propose  

a divide-and-conquer local search heuristic with quadrant restrictions (DACQ) and a  

divide-and-conquer local search heuristic with neighbor restrictions (DACN). In these  

local search algorithms, there are neighborhood restrictions on the lattice points to which  

points can be assigned. Both algorithms follow the same steps used in DAC. However,  

the points in M are not assigned to all of the lattice points. The neighborhood is restricted  

as follows.  

For DACQ, we restrict a point to the quadrant in which it is assigned initially. When a lattice point 

is divided into four new points, we consider only movements of currently assigned points to one of 

the four new points. Therefore, at each stage of the algorithm, only four lattice points are considered 

for local search.  

 

For DACN, we restrict a point so that it can be assigned only to a neighbor of the  

lattice point to which it is currently assigned.  A solution s' belongs to the neighborhood  

of a solution s if for any point i    M with an assignment of k    N in s, the assignment of i  

in s' is l, where l is any lattice point in N that is next to k, either horizontally, vertically, or  

diagonally (see Figure 4.3). Thus, at each step, a maximum of nine lattice points can be  

considered for local search.  Note that i can stay where it is currently assigned.  

 

We show the results for DACQ and DACN for the same problems used in the previous 

experiments. DACQ generates very poor results. It never finds the global optimum to any of the 50-

point, 100-point, or 150-point problems. On the other hand, DACN produces very good results. In 

nine of 10 problems of size 50 and nine of the 10 problems of size 100, DACN finds the global 

optimum. DACN finds the global optimum in all 10 problems of size 150.  
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The average running times for DACQ are 1.22 seconds, 5.01 seconds, and 11.26  

seconds for the 50-point problems, the 100-point problems, and the 150-point problems,  

respectively. For DACN, the average running times for the 50-point problems, the 100- 

point problems, and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95  

seconds, respectively. Both heuristics have much lower running times than DAC.  

 

Considering both solution quality and running time, DACN appears to be the best  

heuristic, when compared to LS, DAC, and DACQ. It gives high-quality solutions in a  

reasonable amount of time. Increasing the size of n does not increase the size of the neighborhood, 

as in DAC, since a maximum of nine lattice points is considered at each stage of the algorithm. This 

results in a more gradual increase in the running time of DACN as a function of n.  

 

RESULTS AND ANALYSIS FOR DACN  

In this section, we apply DACN to several data sets with 50, 100, and 150 points  

with nonzero global optimal objective function values. The data sets were randomly  

generated from lattice sets in three, four, and five dimensions (e.g., for three dimensions,  

points were generated from a 16 × 16 ×16 lattice; for four dimensions, points were  

generated from a 16 × 16 ×16×16 lattice, and so on). For each combination of dimension  

and size, 10 different problems were generated. The nine problem sets (problem sets 1 to 9) are 

described in Table 1.  

In all our experiments, we use q = 2. In cases where r = q, it is easy to compare the quality of the 

computational results. In this case, the optimal objective function value is known and equal to zero. 

However, for problems where q < r, the optimal value of the objective function is unknown and 

greater than zero. No local criterion exists for deciding how good a local optimal solution is as 

compared to a global one (Cela, 1998). Actually, from a complexity point of view, Cela (1998) 

states that even deciding whether a given local solution is a global optimal is an NP-hard problem.  

 

Problem Set      Dimensions  Number of Points 

1    3   50 

2    3   100 

  3    3   150 

4    4   50 

5    4   100 

6    4   150 
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7    5   50 

8    5   100 

9    5   150 

Table.1 Characteristics of problem sets 

 

In Table 1, we show the results for problem sets 1, 2, and 3. We do not know  

the global optimal value for these problems and so we cannot compare the results we  

obtained. We observed though that the frequencies for the best solutions are very low.  

The frequencies are all less than 10, expect for problem six of problem set 2, which has a  

frequency of 17. The average running times are 4.33 seconds, 15.73 seconds, and 36.65  

seconds, for problem sets 1, 2, and 3, respectively. In Figure 4 we show a plot of the  

final result obtained by DACN for problem two of problem set 1. This plot and all other  

plots in this thesis are produced using Matlab 7.0 (Sigmon and Davis, 2002). In Figures 5 and 6, we 

show the plots for problem nine of problem set 2 and problem four of problem set 3, respectively.  

 

 10 147 133 145 76 97     

82 86 93 125 107 16 131 65 126  

121 17 143 74 127 89 91    

92 14 123 36 124 134 75    

135 84 113 29       

130 115 117 12 55 5 150 13 129 108 

73 102 106 59 27 137 28 18 11 54 

99 56 144 79 48 47 81    

80 53 22 136 43 23 148 67 61  

100 103 60 94 122 2 58 78   

26 25 51 45 139 24 141 96 38 142 

62 112 7 104 77 35 37 57 9  

21 105 138 110 72 85 31 68   

90 114 66 140 33 116 63 146 109  

132 118 88 71 111 42     

40 119 20 95 149 30 83    
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 Figure 1 Plot for problem 5 from Problem Set 6. 

 50-point problems 100-point problems 150-point problems 

 Running time Running time 

 Best Best Best 

Problem solution Freq (secs) solution Freq (secs) solution Freq (secs) 

1 75247.8 1 4.57 325175 1 17.81 802908 1 38.22 

2 64814.3 1 5.24 333587 1 18.68 841420 1 39.86 

3 78566.4 1 4.45 348777 1 17.31 860219 1 41.67 

4 75835.4 1 4.74 356028 1 17.25 812147 1 40.28 

5 72817.3 1 4.39 329985 1 15.57 813606 2 40.68 

6 81840.3 1 4.64 360491 1 18.31 856291 1 40.79 

7 64342.7 1 4.46 297337 1 16.99 747779 1 37.02 

8 71669.1 1 4.49 305608 1 17.46 753434 1 43.03 

9 85219.9 1 4.76 368939 1 16.49 877125 1 39.62 

10 78102.9 2 4.82 319882 1 18.24 784065 1 41.53 

Average 4.66 17.41        
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 40.27 

Table 2 Results for problem sets 7, 8, and 9 for DACN. These problem sets   are originally 

in five dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Plot for problem 10 from Problem Set 9. 

 

CONCLUSIONS  

DACN provides an approximate solution to the data visualization problem in a  

small amount of computing time. For the problem sets originally in two-dimensions,  

DACN produces the global optimum in 28 of the 30 problems. For the other problem  

sets, the global optimal solutions are unknown. In the remaining chapters, we will use  

35 131 36 49 96 44 111 134       

117 13 65 25 74 145         

72 24 90 22 42          

2 118 113 124 112 27 10 93 141      

31 147 30 106 143 85 99 116       

3 79 73 88 133 110 29 123 71      

127 69 58 101 84 136 107 76       

15 40 138 148 59 7 68 94 11      

75 33 144 4 135 14 86 77 5 100 9    

16 46 132 142 126 32 140 20 26 57     

149 39 87 61 47 45 64 17 115 28 48 56 83 70 

89 43 41 53 108 146 109 125 38      

6 62 81 82 19 37 97 92 12 102     

60 150 129130 63 18 55         

105 104 80 50 122          

114 120 

121 

137 95 54 128         
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other algorithms on these problem sets and then compare these results to the solutions  

generated by DACN.  
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