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ANALYSIS OF DIVIDE-AND CONQUER LOCAL
SEARCH HEURISTICS WITH QUADRANT AND
NEIGHBOR RESTRICTIONS

DAVENDRA KRISHAN

ABSTRACT

For DACQ, we restrict a point to the quadrant in which it is‘assigned initially. When a lattice point is divided
into four new points, we consider only movements of currently assigned peints to one of the four new points.
Therefore, at each stage of the algorithm, only fodr lattice points are.considered forlacal search.

For DACN, we restrict a point so 4hat it can be assigned»only to a “neighbor of the
lattice point to which it is currently~assigned. A solution s“ belongs to the neighborhood
of a solution s if for any point i M with an assignment of k N in s, the assignment of i
in s' is I, where | is any lattice point in NTthat<is next to k, either “horizontally, vertically, or
diagonally (see Figure 4.3)@nThus, at each step, @ maximum of nine lattice points can be
considered for local search. Note that incan stay where it'is currently assigned.

Key words: Quadrant, algorithm, neighbarhooed, diagonally.

INTRODUCTION

Today’sq, data sets “are), usually \large and multidimensional, growing and changing
with  time;y, consequently; they are “usually complex, dynamic, and difficult to visualize.
Data visualization reveals the wrelationships and trends that are not evident from the raw
multidimensional \data sets by using mathematical techniques to reduce the number of
dimensions while’ preserving the relevant inherent properties. Data visualization rests on
the premise that a picture, is warth a thousand words (Schiffman et al., 1981; Young, 1987). The
practical value of data wisualization is based on the fact that it is often easier
and more informative to “look at a picture of the data than to look at the data points
themselves, particularly when the data set is large (Schiffman et al.,, 1981). Large and
multidimensional data sets that require visualization are commonplace today and may be
encountered in many disciplines ranging from the physical, biological, and behavioral
sciences to product development, marketing, and advertising (Schiffman et al., 1981).
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Popular  techniques used to solve data  visualization problems include
multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997;
Sammon, 1969; Schiffman et al., 1981; Young, 1987). These techniques solve the data
visualization problem using nonlinear optimization techniques. A limitation of a
nonlinear algorithm is the small number of vectors (data points) it can handle (Sammon,
1969). Even with today’s fast computers, nonlinear optimization techniques are usually
slow and inefficient for large data sets. Discrete optimization, techniques may provide an
efficient solution to the data visualization problem.

MATERIAL AND METHOD

Next, we suggest two refinements. to., DAC that reduce™ running time. We propose
a divide-and-conquer local search heuristic with® quadrant restrictions (DACQ) and a
divide-and-conquer local search heuristic with® neighbor restrictions » (DACN). In these
local search algorithms, thére, are neighborhoed restrictions on_the lattice points to which
points can be assigned. Both algerithms follow" the, same steps’ used in DAC. However,
the points in M are not assigned to allwof the lattice peints. The neighborhood is restricted
as follows.

For DACQ, we festrict a point to the,quadrant in‘which,it is assigned initially. When a lattice point
is divided into four'new points, we consider only movements of currently assigned points to one of
the foursew points. Therefore, at each stage of the algorithm, only four lattice points are considered
for local'search.

For DACN, we irestrict a pointsso that it can be assigned only to a neighbor of the
lattice point to which it is currently assigned. A solution s' belongs to the neighborhood
of a solution s if foriany, pointsi® M with an assignment of k N in s, the assignment of i
in s' is I, where | is any lattice point in N that is next to k, either horizontally, vertically, or
diagonally (see Figure 4.3). Thus, at each step, a maximum of nine lattice points can be
considered for local search. Note that i can stay where it is currently assigned.

We show the results for DACQ and DACN for the same problems used in the previous
experiments. DACQ generates very poor results. It never finds the global optimum to any of the 50-
point, 100-point, or 150-point problems. On the other hand, DACN produces very good results. In
nine of 10 problems of size 50 and nine of the 10 problems of size 100, DACN finds the global
optimum. DACN finds the global optimum in all 10 problems of size 150.

International Journal of Advances in Engineering Research




International Journal of Advances in Engineering Research http://www.ijaer.com

(JAER) 2013, Vol. No. 5, Issue No. I, January ISSN: 2231-5152

The average running times for DACQ are 1.22 seconds, 5.01 seconds, and 11.26
seconds for the 50-point problems, the 100-point problems, and the 150-point problems,
respectively. For DACN, the average running times for the 50-point problems, the 100-
point problems, and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95
seconds, respectively. Both heuristics have much lower running times than DAC.

Considering both solution quality and running time, DACN appears to be the best
heuristic, when compared to LS, DAC, and DACQ« It gives, high-quality solutions in a
reasonable amount of time. Increasing the size of n does not increase the size of the neighborhood,
as in DAC, since a maximum of nine lattice points is considered at each stage of the algorithm. This
results in a more gradual increase in the runningdime of DACN as a functien,of n.

RESULTS AND ANALYSIS FOR DACN

In this section, we apply DACN to ‘several data sets with 50, %100, and 150 points
with nonzero global optimal objective function values. The data. sets were randomly
generated from lattice setS Innthree, four, and five dimensionsae(e.g., for three dimensions,
points were generated from a 16wx 16 x16 lattice; fors four dimensions, points were
generated from a 16 x 16 X16x16 lattice;, and so on). For each combination of dimension
and size, 10 different problems‘were generated. The nine problem sets (problem sets 1 to 9) are
described in Table 1.

In all our experiments, we use g = 2, In‘cases where r = q, it is easy to compare the quality of the
computational results. In‘this,case, the'optimal objective function value is known and equal to zero.
However, for,problems where g < r, the optimal value of the objective function is unknown and
greater than ‘zero:, No local criterion exists for deciding how good a local optimal solution is as
compared to a global one (Cela, "1998). Actually, from a complexity point of view, Cela (1998)
states that even deciding,whether a given local solution is a global optimal is an NP-hard problem.

Problem Set Dimensions Number of Points

3 50

100

150

50

100

150
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50
100
150

Table.1 Characteristics of problem sets

In Table 1, we show the results for problem sets 1, 2, and 3. We do not know
the global optimal value for these problems and sodwe cannot compare the results we
obtained. We observed though that the frequencies for the “best solutions are very low.
The frequencies are all less than 10, expect for problem six of \problem set 2, which has a
frequency of 17. The average running times are 4.33»seconds, 15.73 seconds, and 36.65
seconds, for problem sets 1, 2, and 3, respectively. In_ Figure 4 “we show a plot of the
final result obtained by DACN for preblem two of problem set 1. This plot and all other
plots in this thesis are produced using Matlab 7.0 (Sigmon and Davis, 2002). In Figures 5 and 6, we
show the plots for problem nine of problem'seti2 and problem four of problem set 3, respectively.

10 | 147 {133,145 |76 |97
82 |86 7|93 1125 16
17 | 143 | 74 89
92, (14 | 123 |\36
84 |[113 129
117 | 12
106 | 59
144 | 79
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60 |94
51 |45
7
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Figure 1 Plot for problem 5 from Problem Set 6.

50-point problems 100-point problems 150-point problems
Running time Running time

Best Best Best

solution solution | Fregg'(secs)y, solution | Freq | (secs)
75247.8 325175 17.81°| 802908 38.22
64814.3 333587 18.68 | 841420 39.86
78566.4 348777 17.31 /860219 41.67
75835.4 356028 17.25 | 812147 40.28
72817.3 329985 15,57 )813606 40.68
81840.3 360491 18.31 1856291 40.79
64342.7 297337 16.99 | 747779 37.02
71669.1 305608 17.46 | 753434 43.03
85219.9 368939 16.49 (877125 39.62
78102.9 319882 18.24 | 784065 41.53
4.66
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40.27

Table 2 Results for problem sets 7, 8, and 9 for DACN. These problem sets are originally
in five dimensions.

35 (131 |36 49 |96 |44 |111|134

13 | 65 25 |74

72 |24 |90 22 |42

2

31 30

3 73

58

15

75
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89 41

6 81

60 129130

80

137

Figure 2 Plot for problem 10 from Problem Set 9.

CONCLUSIONS

DACN provides an approximate solution to the data visualization problem in a
small amount of computing time. For the problem sets originally in two-dimensions,
DACN produces the global optimum in 28 of the 30 problems. For the other problem
sets, the global optimal solutions are unknown. In the remaining chapters, we will use
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other algorithms on these problem sets and then compare these results to the solutions
generated by DACN.
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